

Available online at www.sciencedirect.com

Polyhedron 22 (2003) 1391-1395

www.elsevier.com/locate/poly

Synthesis and reactivity studies of cyclopentadienyl bis(triphenylphosphine)osmium(II) complexes. Crystal and molecular structure of $[CpOs(PPh₃)(phen)]BF₄$

R. Lalrempuia^a, Patrick J. Carroll^{a,b}, Mohan Rao Kollipara^{a,*}

^a Department of Chemistry, North Eastern Hill University, Shillong 793 022, India ^b Department of Chemistry, University of Pennsylvania, 3301 Spruce Stree, Philadelphia, PA 19104-6323, USA

Received 6 November 2002; accepted 20 February 2003

Abstract

Reaction of $[CDOS(PPh₃)₂Br]$ (1) with acetonitrile ligand or monodentate anions yielded complexes of the type $[CpOs(PPh₃)₂(CH₃CN]⁺$ (2), $[CpOs(PPh₃)₂X]$, $X = CN$ (3) and NCS (4). Treatment of 1 with NaNO₂-HCl in the presence of NH_4BF_4 yielded the dicationic complex $[CpOs(PPh_3)_2(NO)](BF_4)_2$ (5). Reactions of the complex $[CpOs(PPh_3)_2(CH_3CN)]BF_4$ (2) with chelating ligands L₂ yielded cationic complexes of the type $[CpOs(L₂)(PPh₃)]BF₄$, where L₂ = 2,2'-bipyridine (bipy) (6), 1,10phenanthroline (phen) (7). These compounds were characterized by ¹H NMR, ³¹P NMR and IR spectral data. The X-ray crystal structure of the complex $[CpOs(PPh₃)(phen)]BF₄$ has been determined. \odot 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Cyclopentadienyl; Osmium; Chelating ligands; Bipyridine; Phenanthroline

1. Introduction

Cyclopentadienyl ruthenium half sandwich complexes are the most extensively studied class of cyclopentadienyl chemistry among the transition metal complexes. The spectrum of reactivity and chemical properties to date for this system is remarkable, especially considering the limited number of synthetic precursors, viz. $[CpRu(PPh₃)₂Cl]$ and $[CpRu(CO)₂Cl]$ [\[1\].](#page-4-0) Recently, more convenient routes have been developed by use of easily exchangeable ligands [\[2\].](#page-4-0) However, not much work has been carried out in the case $[CpOs(PPh₃)₂Br]$, which could be due to lower kinetic lability of the phosphines compared to its ruthenium analogue. For instance, in the case of ruthenium, the substitution of two triphenylphosphines by chelating diphos ligands takes place readily in boiling benzene or toluene, whereas the same reaction requires boiling decaline for several hours in case of its osmium analogue [\[3\].](#page-4-0) But it was observed that the dissociation of the $M-X$ bond takes place readily in polar solvents such as methanol for both cases [\[4\]](#page-4-0).

We recently reported the reactions of $[(\eta^5 C_5Me_5)Ru(PPh_3)_2(CH_3CN]$ ⁺ and $[(\eta^5-C_9H_7)Ru$ $(PPh_3)_{2}(CH_3CN)]^{+}$ with bipy and phen and presented their results [\[5\].](#page-4-0) In this paper, we would like to report a few substitution reactions at $Os-Br$ and $Os-P$ bonds. In methanol, bromide was replaced by other anions to give neutral complexes of the type $[CpOs(PPh₃)₂X]$ and in acetonitrile, the cationic complex $[CpOs(PPh₃)₂$ - $(NCCH₃)$ ⁺ was isolated. Reaction of $[CpOs(PPh₃)₂$ - $(NCH_3)IBF_4$ with chelating ligands L_2 by refluxing in toluene followed by methanol yielded cationic complexes $[CpOs(L_2)(PPh_3)]BF_4$, where $L_2 =$ bipy and phen. The molecular structure of $[CpOs(PPh₃)(phen)]BF₄ has$ been solved by X-ray crystallography.

^{*} Corresponding author. Tel.: $+91-364-2550-041$; fax: $+91-364-$ 2550-486.

E-mail addresses: carrollp@sas.upenn.edu (P.J. Carroll), kmrao@nehu.ac.in (M.R. Kollipara).

2. Experimental

All solvents were dried and distilled by standard methods. All chemicals were obtained from commercial sources. Infrared spectra were recorded as KBr pellets (CsI for complex 5) using a Perkin–Elmer model-983 spectrophotometer. 1 H NMR spectra were recorded on a Bruker ACF 300 spectrometer and referenced to external tetramethylsilane. ${}^{31}P~\{ {}^{1}H\}$ NMR chemical shifts are recorded relative to H_3PO_4 (85%). Elemental analyses were performed by the Regional Sophisticated Instrumentation Centre (RSIC), NEHU, Shillong.

2.1. Preparation of $[CpOs(PPh₃)₂Br]$ (1)

This compound was prepared by following a litera-ture procedure [\[6\].](#page-4-0)

¹H NMR (CDCl₃, δ): 7.25 (m, 30H, Ph), 4.31 (s, 5H, C_5H_5). ³¹P{¹H} NMR (CDCl₃, δ): -3.85 (s).

2.2. Preparation of $[CpOs(PPh₃)₂(CH₃CN)]BF₄(2)$

A mixture of $[CpOs(PPh₃)₂Br]$ (100 mg, 0.116 mmol) and NH_4BF_4 (25 mg, 0.24 mmol) was refluxed in acetonitrile (20 ml) under nitrogen atmosphere. The insoluble starting material slowly dissolved and the color changed to very pale yellow solution after 1 h. The solvent was then evaporated under reduced pressure. The residue was extracted with acetone, filtered and the volume of the filtrate was reduced. Subsequent addition of hexane yielded a cream colored product. The compound recrystallised from dichloromethane-diethylether giving grey needle shaped crystals.

Yield: 86 mg, 82%. Anal. Found: C, 56.88; H, 4.20; N, 1.56. Calc. for C43H38BF4NP2Os: C, 56.89; H, 4.21; N, 1.54%. ¹H NMR (CDCl₃, δ): 7.34-7.01 (m, 30 H, Ph), 4.66 (s, 5H, Cp), 2.41 (s, 3H, CH₃). ³¹P{¹H} NMR (δ): 2.11 (s). IR (KBr): 2282 (m, v_{CN}), 1082 (s, br, v_{BF}).

2.3. Preparation of $[CpOs(PPh₃)₂CN]$ (3)

A mixture of $[CpOs(PPh₃)₂Br]$ (200 mg, 0.233 mmol) and 600 mg of KCN was refluxed in methanol (20 ml) for 3 h. A pale yellow solution was evaporated to dryness under reduced pressure. The residue was extracted with $CH₂Cl₂$ and excess KCN was filtered off. Addition of excess hexane into the CH_2Cl_2 solution yielded the product as a colorless crystalline solid.

Yield: 120 mg, 64%. Anal. Found: C, 62.55; H, 4.36; N, 1.69. Calc. for C₄₂H₃₅NP₂Os: C, 62.59; H, 4.37; N, 1.73%. ¹H NMR (CDCl_{3,} δ): 7.33 (m, 30H, Ph), 4.46 (s, 5H, Cp). ${}^{31}P\{{}^{1}H\}$ NMR (CDCl₃, δ): 2.76 (s).IR (KBr, v_{CN}): 2063 (s).

2.4. Preparation of $[CpOs(PPh₃)₂(NCS)]$ (4)

This complex was prepared in a similar manner to that of complex 3. Here KSCN was used instead of KCN. The compound is yellow in color.

Yield: 60 mg, 64%. Anal. Found: C, 59.99; H, 4.16; N, 1.59. Calc. for $C_{42}H_{35}NP_2SOS$: C, 60.20; H, 4.21; N, 1.67%. IR (KBr, v_{NCS}): 2108 (s).

2.5. Preparation of $[CpOs(PPh₃)₂(NO)](BF₄)₂(5)$

The mixture of $[CpOs(PPh₃)₂Br]$ (100 mg, 0.116) mmol) and 1 ml HCl was refluxed in EtOH (30 ml) for 1 h. Then NaNO_2 (168 mg, 2.434 mmol) in water (1 ml) was added, the whole mixture turns into a homogeneous yellowish clear solution which was filtered while hot. NH_4BF_4 (aq) was added to the filtrate which was then left overnight resulting in the formation of a yellow precipitate that was collected by centrifuge.

 $Yield = 60$ mg, 52.6%. *Anal.* Found: C, 49.98; H, 3.00; N, 1.45. Calc. for $C_{41}H_{35}B_2F_8NOP_2Os$: C, 50.07; H, 3.07; N, 1.42%. ¹H NMR (CDCl₃, δ): 7.51–7.05 (m, 30H, Ph), 6.23 (s, 5H, Cp). $^{31}P\{^{1}H\}$ NMR (δ): -2.06 (s). IR (CsI): 1845 (s, v_{NO}), 1062 (s, br, v_{BE}).

2.6. Preparation of $[CpOs(PPh₃)(bipy)]BF₄(6)$

A mixture of $[CpOs(PPh₃)₂(CH₃CN)]BF₄$ (100 mg, 0.110 mmol) and 2,2?-bipyridine (55 mg, 0.354 mmol) was refluxed in toluene (30 ml) for 12 h and the solvent was removed in a rotary evaporator to dryness. Then methanol (30 ml) was added, the solution turned a deep red color and was refluxed for 10 h. Methanol was removed in a rotary evaporator under reduced pressure. The residue was dissolved in dichloromethane and loaded onto a silica gel column (hexane) where 20 ml of dichloromethane was first run to this column. The red band of the compound was eluted with a mixture of $CH₂Cl₂$ and methanol (3:1). The solution was evaporated to dryness, dissolved in acetone (\sim 1 ml) and addition of excess hexane precipitated the product as a dark red crystals.

Yield: 30 mg, 35.8%. Anal. Found: C, 52.00; H, 3.56; N, 3.50. Calc. for C₃₃H₂₈BF₄N₂POs: C, 52.11; H, 3.71; N, 3.68%. ¹H NMR (CDCl₃, δ): 9.29 (d), 7.87 (d), 7.68 (t), 7.40–6.70 (m), 4.90 (s, Cp). ${}^{31}P\{{}^{1}H\}$ NMR (CDCl₃, δ): 16.65 (s). IR (KBr, v_{BF}): 1089 (s, br). UV–Vis (λ_{max} in CH_3CN) = 392 nm.

2.7. Preparation of $[CpOs(PPh₃)(Phen)$ [BF₄ (7)

This compound was prepared in similar manner to the preparation of 6 except 1,10-phenanthroline was used instead of 2,2?-bipyridine.

Yield: 36 mg, 41.6%. Anal. Found: C, 53.55; H, 5.56; N, 3.50. Calc. for C₃₅H₂₈BF₄N₂POs: C, 53.57; H, 3.59;

N, 3.57%. ¹H NMR (acetone- d_6 δ): 9.91 (d, 2H), 8.39 (d, 2H) 8.03 (s, 2H) 7.63 (d, 2H), 7.30–6.92 (m, 17H), 5.21 (s, 5H, Cp). ${}^{31}P\{{}^{1}H\}$ NMR (δ): 22.60 (s). IR (KBr): 1089 (s, br, v_{BF}); UV-Vis (λ_{max} , in CH₃CN) = 375 nm.

2.8. Crystallographic analysis

Single crystals suitable for x-ray analysis were grown by slow diffusion of hexane into acetone solution. X-ray intensity data were collected on a Rigaku R-AXIS IIc area detector employing graphite-monochromatic Mo K α radiation ($\lambda = 0.71069$ Å) at a temperature of 293 K. Indexing was performed from a series of 1° oscillation images with exposures of 100 s per frame. A hemisphere of data was collected using 6° oscillation angles with exposures of 100 s per frame and a crystal-to-detector distance of 82 mm. Oscillation images were processed using BIOTEX [\[8\],](#page-4-0) producing a listing of unaveraged F^2 and $\sigma(F^2)$ values which were then passed to the TEXSAN [\[9\]](#page-4-0) program package for further processing and structure solution on a Silicon Graphics $O₂$ computer. A total of 22223 reflections were measured over the ranges $5.02 \le 2\theta \le 54.96^{\circ}$, $-23 \le h \le 23$, $-10 \le k \le 12$, $-24 \le l \le 24$ yielding 6737 unique reflections ($R_{\text{int}}=$ 0.0395). The intensity data were corrected for Lorentz and polarization effects and for absorption using REQAB [\[10\]](#page-4-0) (minimum and maximum transmission 0.655, 1.000) Table 1.

The structure was solved by direct methods (SIR-92 [\[11\]](#page-4-0)). Refinement was by full-matrix least-squares based on $F²$ using SHELXL-93 [\[12\].](#page-4-0) All reflections were used during refinement $(F^2$ values that were experimentally negative were replaced by $F^2 = 0$). The weighting scheme used was $w = 1/[\sigma^2 (F_0^2) + 0.0516P^2 + 9.8409P]$ where $P = (F_o^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a 'riding' model. Refinement converged to $R_1 = 0.0488$ and $wR_2 = 0.1114$ for 6050 reflections for which $F >$ $4\sigma(F)$ and $R_1 = 0.0563$, $wR_2 = 0.1166$ and $GOF =$ 1.134 for all 6737 unique, non-zero reflections and 398 variables. The maximum Δ/σ in the final cycle of least squares was 0.002 and the two most prominent peaks in the final difference Fourier were $+1.170$ and -1.262 e $\rm \AA^{-3}.$

Fig. 1 is an ORTEP [\[13\]](#page-4-0) representation of the molecule with 30% probability thermal ellipsoids displayed.

3. Results and discussion:

The reaction of the complex $[CpOs(PPh₃)₂Br]$ with anions take place by refluxing in methanol yielding complexes of the type $[CpOs(PPh₃)₂X]$ via the solvated compound $[CpOs(PPh₃)₂(MeOH)]⁺$ as shown in [Scheme 1.](#page-3-0) Complex 2 was obtained by refluxing 1 in acetonitrile in the presence of NH4BF4.

Table 1 Summary of structure determination of compound [CpOs(PPh3)(phen)]BF4

Formula	$OsC_{35}BH_{28}PN_{2}F_{4}$
Formula weight	784.57
Crystal class	monoclinic
Space group	$P2_1/n$ (no. 14)
Z	4
Unit cell dimensions	
a(A)	18.2243(2)
b(A)	9.49800(10)
c(A)	19.0352(2)
β (°)	113.8630(10)
$V(\AA^3)$	3013.22(6)
μ (cm ⁻¹)	43.38
Crystal size (mm)	$0.35 \times 0.32 \times 0.10$
$D_{\rm calc}$ (g cm ⁻³)	1.729
F(000)	1536
Radiation	Mo Kα (λ = 0.71069 Å)
2θ range (\degree)	$5.02 - 54.96$
hkl collected	$-23 \le h \le 23$; $-10 \le k \le 12$; $-24 \le$
	l < 24
No. reflections measured	22223
No. unique reflections	6737 $(R_{\text{int}} = 0.0395)$
No. observed reflections	6050 $(F > 4\sigma)$
No. reflections used in re-	6737
finement	
No. parameters	398
<i>R</i> indices $(F > 4\sigma)^a$	$R_1 = 0.0488$, $wR_2 = 0.1114$
R indices (all data)	$R_1 = 0.0563$, $wR_2 = 0.1166$
GOF ^b	1.134
Final difference peaks (e.	$+1.170, -1.262$
$\rm{\AA}^{-3}$	

^a $R_1 = \sum ||F_0| - |F_c||/2|F_0|$, $wR_2 = \{\sum w (F_0^2 - F_c^2)^2 / 2w (F_0^2)^2\}^{1/2}$.

^b GOF = $\{\sum w (F_0^2 - F_c^2)^2 / (n - p)\}^{1/2}$, where *n* = the number of re-

flections and $p =$ the number of parameters refined.

Fig. 1. ORTEP drawing of compound 7 with 30% probability thermal ellipsoids. Hydrogen atoms and BF₄ omitted for clarity.

All these complexes are colorless to pale yellow colored and soluble in most organic solvents. Complex 2 displays a characteristic IR band at 2282 cm^{-1} due to

 v_{CN} of CH₃CN. This compound has been isolated as the tetraphenylborate salt [\[3\]](#page-4-0). The ${}^{1}H$ NMR spectrum of the complex exhibited the resonance of the $CH₃$ protons of coordinated acetonitrile as a singlet at δ 2.41 [lit. δ 1.33 (t)]. The IR spectra of complexes 3 and 4 showed strong bands at 2063 and 2108 cm⁻¹ for v_{CN} and v_{NCS} respectively [\[4a\].](#page-4-0)

The reaction of 1 with $NaNO₂$ and HCl (aq) in ethanol yielded a yellow compound which was characterized as $[CpOs(PPh₃)₂(NO)](BF₄)₂$ (5). This compound showed a strong v_{NO} band at 1848 cm⁻¹ indicating a linear Os-NO bond [\[7\]](#page-4-0). The ${}^{1}H$ NMR spectrum of this complex exhibited a resonance for the deshielded Cp protons at 6.23 ppm, a very significant shift compared to the starting complex 1 (4.31 ppm) that indicates a good π -accepting ability of the nitrosyl ligand. However, the same reaction conditions in the case of the ruthenium analogue resulted in the dissociation of one triphenylphosphine forming [CpRu(PPh₃)(NO)Cl]BF₄ [\[7\]](#page-4-0). The integration of the ¹H NMR spectrum, the absence of band in the range of $200-300$ cm⁻¹ (Os-Br) in the far IR spectrum and the analytical data suggested the compound to be $[CpOs(PPh₃)₂NO] (BF₄)₂$ (5). Moreover, only a slight shift of phosphorus resonance in the $31P$ NMR was observed in comparison to the starting complex. We feel that there would be significant shift in the position of the phosphorus peak in the 31P NMR if one triphenylphosphine had been replaced from the metal centre. The formation of the dication of $[CpOs(PPh₃)₂NO](BF₄)₂$ has been reported previously via a different route [\[14\].](#page-4-0)

Treatment of $[CpOs(PPh₃)₂Br]$ (1) with excess of ligands L_2 such as 2,2'-bipyridine or 1,10-phenanthroline in methanol, toluene or benzene under refluxing condition even after 2 days does not give the expected compounds. However, the reaction of $[CDOS(PPh₃)₂(CH₃CN)]BF₄ (2) with bipy and phen$ yielded cationic complexes of the type $[CpOs(PPh₃)(L₂)]BF₄$, which were isolated as dark red compounds.

 $[CpOs(PPh₃)₂(CH₃CN)]BF₄$
i and ii \overline{a}

$$
\overset{\text{i and ii}}{\rightarrow} [CpOs(PPh3)(L2)]BF4
$$

where $i =$ toluene; $ii =$ methanol; $L_2 =$ bipy (6) and phen (7).

A downfield shift of the cyclopentadienyl protons in comparison to the starting complex was observed in the ¹H NMR spectra. The parent complex [CpOs(PPh₃)₂- (CH_3CN)]BF₄, (2) showed the resonance for the cyclo-

pentadienyl protons at 4.66 ppm while complexes 6 and 7 exhibited the resonance for the same at δ 4.91 and 5.21 ppm, respectively. This indicates that there is a significant deshielding after substituting $CH₃CN$ and one $PPh₃$ with chelating N,N'-donor heterocyclic ligands. The ¹H NMR spectra of these complexes also showed a multiplet in the range of $7.0-9.5$ ppm due to the phenyl protons of triphenylphosphine and of the heterocyclic N, N'-donor ligands. The $3^{1}P$ NMR spectra of the 6 and 7 exhibited a single sharp resonance at 16.65 ppm and 22.60 ppm respectively while the starting complex $[CpOs(PPh₃)₂CH₃CN]BF₄ showed the same at 2.11$ ppm. These distinct downfield shifts were observed because of the dissociation of one triphenylphosphine from the metal centre. The downfield shift of complex 7 is slightly more compared to complex 6 due to steric bulkiness of the phenanthroline ligand.

3.1. The structure of $(CpOs(PPh₃)(phen)$ [BF₄

The structure of complex 7 is shown in [Fig. 1.](#page-2-0) The bond lengths and bond angles are listed in Table 2. The osmium atom is bonded to a phenanthroline ligand, triphenylphosphine ligand and cyclopentadienyl group through the five-membered ring. The cyclopentadienyl group is clearly bonded in a pentahapto fashion to the metal. Two of the $Os-C$ bond lengths, those involving the C(32) and C(33) are shorter (2.176 and 2.193 \AA) than the other three $C(31)$, $C(34)$ and $C(35)$ carbon atoms $(2.210, 2.215, 2.211)$ A). The average Os–C bond

Table 2

Selected bond lengths (A) and bond angles $(°)$ in the compound $[CpOs(PPh₃)(phen)]BF₄$

Bond lengths			
$Os-N1$	2.090(5)	$N2 - C10$	1.345(8)
$Os-C33$	2.193(6)	$C31-C32$	1.418(11)
$Os-C34$	2.215(6)	$C34-C35$	1.375(13)
$P-C25$	1.835(7)	$B-F3$	1.371(12)
$N1 - C12$	1.373(7)	$Os-C32$	2.176(6)
$C31-C35$	1.413(11)	$Os-C35$	2.211(6)
$C33-C34$	1.431(12)	$P - C13$	1.831(7)
$B - F4$	1.352(12)	$N1 - C1$	1.347(8)
$Os-N2$	2.092(5)	$N2 - C11$	1.372(8)
$Os-C31$	2.210(6)	$C32-C33$	1.409(11)
$Os-P$	2.318(2)	$B-F2$	1.263(12)
$P - C19$	1.844(7)	$B - F1$	1.423(14)
Bond angles			
$N1-Os-N2$	77.2(2)	$C12-N1-Os$	115.6(4)
$C13-P-Os$	113.1(2)	$F2-B-F4$	119.3(11)
$Cl-N1-Os$	128.1(4)	$F4 - B - F1$	103.4(10)
$C19-P$ -Os	118.7(2)	$N1-Os-P$	88.86(14)
$F2-B-F1$	106.0(10)	$C11-N2-Os$	115.5(4)
$F4 - B - F3$	109.5(8)	$C10-N2-Os$	126.6(5)
$N2-Os-P$	89.02(13)	$F2-B-F3$	111.7(10)
$C25-P$ -Os	116.1(2)	$F3 - B - F1$	105.8(9)

distance being 2.201 Å, slightly longer than the parent complex $[CpOs(PPh₃)₂Br]$ (2.177 Å) [6].

The Os–P bond length is 2.318 \AA which also is slightly longer than the average Os-P distance (2.293 Å) [6]. The two $Os-N$ bonds are almost equal, 2.090 and 2.092 \AA , and also are little longer compared to the $Os-N$ bond lengths observed for osmium-phenanthroline complexes which fall within a range of $2.066-2.1$ Å [15]. The geometry of complex 7 is octahedral about the metal center assuming the cyclopentadienyl ligand occupies three coordinate sites. This is evident by the near 90 $^{\circ}$ bond angles between N(1)–Os–P (88.86 $^{\circ}$) and $N(2)$ –Os–P (89.02°).

4. Conclusions

The reactions of $[CpOs(PPh₃)₂Br]$ with monodentate anions and neutral ligands were described and they do not seems to differ much from their ruthenium analogues except in the formation of $[CpOs(PPh₃)₂NO]⁺² (5)$. We also observed that the complex $[CpOs(PPh₃)₂$ - $(CH_3CN]^+$ was a better precursor for the preparation of $[CpOs(PPh₃)(L₂)]^+$ compared to $[CpOs(PPh₃)₂Br]$. The molecular structure of the complex $[CpOs(PPh₃) (phen)|BF_4$ was established by single X-ray crystallography.

5. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 194247 for complex 7. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: $+44-1223-336033$; e-mail: deposit $@$ ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

K.M.R. thanks the DST (DST SERC: SP/S1/F-22/ 98), New Delhi for financial support. We are very grateful to one of the referees for his helpful suggestions.

References

- [1] (a) M.A. Bennett, K. Khan, E. Wenger, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Ch. 8, vol. 7, 2nd ed., Elsevier, Oxford, 1995, p. 473; (b) S.G. Davies, J.P. McNally, A.J. Smallridge, Adv. Organomet. Chem. 30 (1991) 1; (c) M.I. Bruce, C. Hameister, A.G. Swincer, R.C. Wallis, Inorg. Synth. 21 (1982) 78. [2] (a) T.P. Gill, K.R. Mann, Organometallics 1 (1982) 485; (b) B. Steimetz, W.A. Schenk, Organometallics 18 (1999) 943; (c) E. Ruba, W. Simanko, K. Mauthner, K.M. Soldouzi, C. Slugovc, K. Mereiter, R. Schmid, K. Kirchner, Organometallics 18 (1999) 3843; (d) C. Slugovc, W. Simanko, K. Mereiter, R. Schmid, K. Kirchner, L. Xiao, W. Weissensteiner, Organometallics 18 (1999) 3865; (e) M.O. Albers, D.J. Robinson, A. Shaver, E. Singleton, Organometallics 5 (1986) 2199; (f) M.O. Albers, D.C. Liles, D.J. Robinson, A. Shaver, E. Singleton, Organometallics 6 (1987) 2347; (g) K. Kirchner, K. Mereiter, A. Umfahrer, R. Schmid, Organometallics 13 (1994) 1886; (h) T. Daniel, N. Mahr, T. Braun, H. Werner, Organometallics 12 (1993) 1475; (i) T. Braun, O. Gevert, H. Werner, J. Am. Chem. Soc. 117 (1995) 7291.
- [3] G.S. Ashby, M.I. Bruce, I.B. Tomkins, R.C. Wallis, Aust. J. Chem. 32 (1979) 1003.
- [4] (a) T. Wilczewski, M. Bochenska, J.F. Biernat, J. Oganomet. Chem. 87 (1981) 215; (b) T. Wilczewski, J. Organomet. Chem. 224 (1982) C1; (c) T. Blackmore, M.I. Bruce, F.G.A. Stone, J. Chem. Soc. (A) (1971) 2376.
- [5] K. Mohan Rao, E.K. Rymmai, Polyhedron 22 (2003) 307.
- [6] M.I. Bruce, P.J. Low, B.W. Skelton, E.R.T. Tiekink, A. Werth, A.H. White, Aust. J. Chem. 48 (1995) 1887.
- [7] F.M. Conroy-Lewis, A.D. Redhouse, S.J. Simpson, J. Organomet. Chem. 399 (1990) 307.
- [8] BIOTEX: A Suite of Programs for the Collection, Reduction and Interpretation of Imaging Plate Data, Molecular Structure Corporation, 1995.
- [9] TEXSAN: Crystal Structure Analysis Package, Molecular Structure Corporation, 1985 and 1992.
- [10] R.A. Jacobsen, REQAB4: Private communication, 1994.
- [11] S.I.R. 92:, A. Altomare, M.C. Burla., M. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliardi, G. Polidoro, J. Appl. Crystallogr. 27 (1994) 435.
- [12] G.M. Sheldrick, SHELXL-93: Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1993.
- [13] C.K. Johnson, ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, ORNL-5138, 1976.
- [14] M.I. Bruce, I.B. Tomkins, F.S. Wong, B.W. Skelton, A.H. White, J. Chem. Soc., Dalton Trans. (1982) 687.
- [15] H.A. Goodwin, D.L. Kepert, J.M. Patrick, B.W. Skelton, A.H. White, Aust. J. Chem. 37 (1984) 1817.